Special Topics in Cryptography

Mohammad Mahmoody

Last time

- Authentication (MAC) using shared keys
- Getting MACs from PRFs

Today

- How to combine CPA security + MACS:
- Security against active attacks (CCA security)

Authentication:

How would Bob know Alice sent this message?

Strong MAC for all (m,k): there is a unique acceptable t / Last time Formal definition of security

The message authentication experiment $\mathsf{Mac-forge}_{\mathcal{A},\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given input 1^n and pracle access to $\operatorname{Mac}_k(\cdot)$. The adversary eventually outputs (m(t)). Let \mathcal{Q} denote the set of all queries that \mathcal{A} asked to its oracle.
- 3. A succeeds if and only if (1) $Vrfy_k(m,t) = 1$ and (2) $m \notin Q$. In that case the output of the experiment is defined to be 1.

DEFINITION 4.2 A message authentication code $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ is existentially unforgeable under an adaptive chosen-message attack, or just secure, if for all probabilistic polynomial-time adversaries \mathcal{A} , there is a negligible function negl such that:

m

(m,t)

ADV can NOT the Find

(m, t') $t \neq t$ that (m, t')

-(m)

 $\Pr[\mathsf{Mac-forge}_{\mathcal{A},\Pi}(n) = 1] \le \mathsf{negl}(n).$

Constructing MACs using PRFs

- Suppose $F_k(\cdot)$ is a PRF with key, input, output lengths: n, *,
- How do we generate MAC tags for messages?

Block-cipter / AES, DEr What we have achieved.

- CPA-secure encryption based on PRFs. $E_{nc}(m) \longrightarrow [r, F(r) \oplus m]$ Bandomized
 - Randomized.
 - Needs input of PRF to be large enough.
- MACs for authentication based on PRFs.
 - Deterministic
 - Needs output of PRF to be large enough.

PRFs could be obtained from:

$$MA((m)=t \le F(m))$$

Pitk

• Theory. PRGs and even one-way functions • Practice: Any "good" cryptographic hash function. $H(K_{y}\chi) = F_{y}(\chi)$

Chosen cipher-text security:

• Combining CPA security with MACs to handle active attacks.

Password verification example

- Alice (client) wants to login on Bob's computer (server)
- Alice's browser has a shared key k with Bob we just need 100 the

Pass

R15= b - b 100

- Alice encrypts the password *pass* using k and sends $c = Enc_k(pass)^{(1)}$
- Bob decrypts c and if the password is correct it allows Alice to login.
- Issue: the fact that there is a "feedback" to modified messages given m=m-m to "Alice" (or an adversary) might lead to recovering the full pass
 CPA secure Enc (ould be "resettable"; there might be Res (C, i, b) *C
 Dec (C) m, m, -, m; = --m

Exercise

- If S=(Enc,Dec) is CCA secure, then using scheme S for the application of encrypting passwords will be "safe" (will need to formalize it).
- Note: the specific attack we discussed does not work anymore if we use CCA secure: if one can "fix" the *i*'th bit to zero, it is NOT CCA secure
- More generally: if adversary modifies the ciphertext in any way, the decryptor will reject and output "error".

CPA security + MAC to \rightarrow CCA security

- We have:
- CPA-secure encryption: (Enc, Dec) based on key k_1
- Strongly-secure MAC: (Mac,Vrf) based on key k_2

- We want:
- (CPA sec of S_1) $(CPA sec of S_1)$ $(CPA sec of S_1)$ $(CPA sec of S_2)$ $(CPA sec of S_2)$ (CPA sec ofCCA secure encryption : (ENC, DEC)

CPA security + MAC to \rightarrow CCA security 1st (wrong) try

• Suppose k_1 is key for MAC and k_2 is key for CPA scheme (Enc, Dec)

 m_1, m_2

- We want to encrypt message m
- First generate a tag using MAC: $t = MAC_{k_1}(m)$
- Encrypt both of [m, t] and get $C = \text{Enc}_{k_2}([m, t])$ hint 3
- To deprypt: First get back [m, t] using $\operatorname{Dec}_{k_2}(C)$ but is Then run Verify $k_1(m, t)$ and output \bot if it rejects... otherwise output $M_{k_1}(m, t)$ and $M_{k_1}(m, t)$

CPA security + MAC to \rightarrow CCA security 2st (correct) way:

First encrypt ad then authenticate • $c = \text{Enc}_{k_2}(m)$ and $tag = \text{MAC}_{k_1}(c)$ and send $C = [c, tag]_c$

- Decryption:
- First run Verify_{k1} (*c*, *t*) and output \perp if it rejects
- If verify passes: then decrypt c using k_2 to get m and output it

M, M

Proof of security (breaking CPA security) Loer Not happen En Dec Pil A usking & that Decipitin but & not given to Kimele A ponyencoracle. By Simulate Win without uskis such C game: 2-2-2)2